616 research outputs found

    In-vehicle vibration study of child safety seats

    Get PDF
    This paper reports experimental measurements of the in-vehicle vibrational behaviour of stage 0&1 child safety seats. Road tests were performed for eight combinations of child, child seat and automobile. Four accelerometers were installed in the vehicles and orientated to measure as closely as possible in the vertical direction; two were attached to the floor and two located at the human interfaces. An SAE pad was placed under the ischial tuberosities of the driver at the seat cushion and a child pad, designed for the purpose of this study, was placed under the child. 4 test runs were made over a pave’ (cobblestone) surface for the driver’s seat and 4 for the child seat at both 20 km/h and 40 km/h. Power spectral densities were determined for all measurement points and acceleration transmissibility functions (ATFs) were estimated from the floor of the vehicle to the human interfaces. The system composed of automobile seat, child seat and child was found to transmit greater vibration than the system composed of automobile seat and driver. The ensemble mean transmissibility in the frequency range from 1 to 60 Hz was found to be 77% for the child seat systems as opposed to 61% for the driver’s seats. The acceleration transmissibility for the child seat system was found to be higher than that of the driver’s seat at most frequencies above 10 Hz for all eight systems tested. The measured ATFs suggest that the principal whole-body vibration resonance of the children occurred at a mean frequency of 8.5, rather than the 3.5 to 5.0 Hz typically found in the case of seated adults. It can be concluded that current belt-fastened child seats are less effective than the vehicle primary seating systems in attenuating vibrational disturbances. The results also suggest the potential inability of evaluating child comfort by means of existing whole-body vibration standards

    Absorbed power of small children

    Get PDF
    Objective. To experimentally measure the seated vertical direction whole-body absorbed power characteristics of small children less than 18 kg in mass. Background. Several studies have reported whole-body absorbed power for adult humans, but no data has been published previously for small children. Methods. Eight children were tested in a laboratory test rig which incorporated safety features which satisfy existing international standards for human testing. Force and acceleration were measured at the point of input to a rigid seat at a sampling rate of 200 Hz, and analysis was performed over the interval from 1.0 to 45.0 Hz. A double normalised (both input acceleration and test subject mass) measure of absorbed power was used. Results. The vertical whole-body power absorption characteristics of the small children were found to present differences with respect to those of adults. The mean frequency of peak absorption was found to be 7.4 Hz as opposed to approximately 4.0–5.0 for adults. The interval of absorption was found to be from approximately 3 to 16 Hz and the total double normalised absorbed power was found to be 86% that of adults. Conclusions. The differences in dynamic response between small children and adults raise questions regarding the applicability of whole-body vibration guidelines such as ISO-2631 in the case of small children since these guidelines were developed from mechanical and subjective response data of adults

    Facilitating the driver detection of road surface type by selective manipulation of the steering-wheel acceleration signal

    Get PDF
    Copyright @ 2012 by Institution of Mechanical Engineers.Previous research has investigated the possibility of facilitating the driver detection of road surface type by means of selective manipulation of the steering-wheel acceleration signal. In previous studies a selective increase in acceleration amplitude has been found to facilitate road-surface-type detection, as has selective manipulation of the individual transient events which are present in the signal. The previous research results have been collected into a first guideline for the optimization of the steering-wheel acceleration signal, and the guideline has been tested in the current study. The test stimuli used in the current study were ten steering-wheel acceleration-time histories which were selected from an extensive database of road test measurements performed by the research group. The time histories, which were all from midsized European automobiles and European roads, were selected such that the widest possible operating envelope could be achieved in terms of the r.m.s. value of the steering acceleration, the kurtosis, the power spectral density function, and the number of transient events present in the signal. The time histories were manipulated by means of the mildly non-stationary mission synthesis algorithm in order to increase, by a factor of 2, both the number and the size of the transient events contained within the frequency interval from 20 Hz to 60Hz. The ensemble, composed of both the unmanipulated and the manipulated time histories, was used to perform a laboratory-based detection task with 15 participants, who were presented the individual stimuli in random order. The participants were asked to state, by answering 'yes' or 'no', whether each stimulus was considered to be from the road surface that was displayed in front of them by means of a large photograph on a board. The results suggest that the selectively manipulated steering-wheel acceleration stimuli produced improved detection for eight of the ten road surface types which were tested, with a maximum improvement of 14 per cent in the case of the broken road surface. The selective manipulation did lead, however, to some degradation in detection for the motorway road stimulus and for the noise road stimulus, thus suggesting that the current guideline is not universally optimal for all road surfaces

    Perception enhancement for steer-by-wire systems

    Get PDF
    Modern automobiles are safer and more comfortable than ever before. If there is one criticism that can be made, however, it is that the achievement of higher levels of comfort has sometimes come at the expense of a lack of driver involvement. The issue of driver involvement can become critical in the case of by-wire systems since these systems do not necessarily have a predetermined path or transfer mechanism for carrying stimuli to the driver. This article discusses the technical requirements of perception enhancing systems for the vehicle steering

    Analysis of variations in diesel engine idle vibration

    Get PDF
    The variations in diesel engine idle vibration caused by fuels of different composition and their contributions to the variations in steering wheel vibrations were assessed. The time-varying covariance method (TV-AutoCov) and time-frequency continuous wavelet transform (CWT) techniques were used to obtain the cyclic and instantaneous characteristics of the vibration data acquired from two turbocharged four-cylinder, four-stroke diesel engine vehicles at idle under 12 different fuel conditions. The analysis revealed that TV-AutoCov analysis was the most effective for detecting changes in cycle-to-cycle combustion energy (22.61 per cent), whereas changes in the instantaneous Values of the combustion peaks were best measured using the CWT method (2.47 per cent). On the other hand, both methods showed that diesel idle vibration was more affected by amplitude modulation ( 12.54 per cent) than frequency modulation (4.46 per cent). The results of this work suggest the use of amplitude modulated signals for studying the human subjective response to diesel idle vibration at the steering wheel in passenger cars
    • …
    corecore